
Approved for public release; further dissemination unlimited

Preprint
UCRL-JRNL-200929

A “Perfect” Hydrodynamic
Similarity and the Effect of
Small-Scale Vortices on
the Large-Scale Dynamics

D.D. Ryutov and B.A. Remington

This article was submitted to the 3rd International Conference
on Inertial Fusion Sciences and Applications
Monterey, CA, September 7, 2003

August 2003



 DISCLAIMER
 
 This document was prepared as an account of work sponsored by an agency of the United States
Government.  Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California.  The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.
 
 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.
 
 

 This report has been reproduced directly from the best available copy.
 

 Available electronically at      http://www.doc.gov/bridge    
 

 Available for a processing fee to U.S. Department of Energy
 And its contractors in paper from

 U.S. Department of Energy
 Office of Scientific and Technical Information

 P.O. Box 62
 Oak Ridge, TN 37831-0062
 Telephone:  (865) 576-8401
 Facsimile:  (865) 576-5728

 E-mail:     reports@adonis.osti.gov    
 

 Available for the sale to the public from
 U.S. Department of Commerce

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161

 Telephone:  (800) 553-6847
 Facsimile:  (703) 605-6900

 E-mail:     orders@ntis.fedworld.gov     
 Online ordering:      http://www.ntis.gov/ordering.htm      

 
 

 OR
 

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html
 

 



1

TuO6.5
A “PERFECT” HYDRODYNAMIC SIMILARITY AND THE EFFECT

OF SMALL-SCALE VORTICES ON THE LARGE-SCALE DYNAMICS

D.D. Ryutov, B.A. Remington
Lawrence Livermore National Laboratory, Livermore, CA 94551, USA

Abstract

In the laboratory experiments designed to reproduce
hydrodynamical phenomena of relevance for astrophysics
the Reynolds numbers, although very large, are usually
smaller than in real astrophysical systems. If the
hydrodynamic flow reaches the turbulent state, it may
then happen that differences (related to the difference in
Reynolds numbers)  would appear in the global-scale
motions of the two systems. The difficulty in studying this
issue in high energy density laboratory experiments lies in
that equations of state and transport coefficients are
usually not very well known, so that the subtle effect of the
Reynolds number may be easily obscured by experimental
uncertainties. An approach has recently been suggested
[D.D. Ryutov, B.A. Remington, Phys. Plasmas, 10, 2629,
2003] that allows one to circumvent this difficulty and
isolate the effect of the Reynolds number. In the present
paper, after presenting a summary of the previous results,
we briefly discuss various aspects of possible
experiments.

I.  INTRODUCTION

Hydrodynamic flows that we encounter in
astrophysics (e.g., supernova explosions, astrophysical
jets, accretion discs, etc) have usually very high Reynolds
numbers (just because of very large spatial scales
involved). Accordingly, laboratory experiments designed
to simulate these phenomena (see reviews [1,2]) should
also have large Reynolds numbers.  Large Reynolds
number flows mean that viscous dissipation does not play
a role in the global-scale motion, which can then be
adequately described by equations of ideal
hydrodynamics (Euler equations).

There exist a convenient scaling [3-5] which relates
the systems described by equations of the ideal
magnetohydrodynamics (MHD); for example, this scaling
relates a real astrophysical system and its laboratory
counterpart, which can be 10 to 20 orders of magnitude
smaller in size. However, it is very difficult to make the
“laboratory” Reynolds number, although very large, the
same as the “astrophysical”  Reynolds number. It then
becomes unclear whether the two systems would evolve
similarly if both reach a state of highly developed
turbulence, where the vortices on dissipative scales would
appear. A question that is most important in this context is
a question on whether two systems with different (large)
Reynolds numbers (say, 106 and 107) and identical in all
other respects would behave differently on the global
scale. [It should be noted that the dissipative-scale
vortices are quite small, well below the resolution of any
imaging system (see Sec. 3 for some numerical
examples).]

A possible approach to answering this question might
be studying the evolution of two systems which are
scalable to each other in the ideal hydrodynamics but
would have different Reynolds numbers. Then, the
differences in their behavior (other than associated with
the scaling transformations) would be a measure of the
dissipative effects. However, applying the scalings from
Refs. [3-5] for isolating subtle dissipative effects is
difficult, because the equations of state (EOS) in the
regimes typical for high-energy density (HED)
hydrodynamic experiments are usually known relatively
poorly. Also poorly known are dissipative coefficients,
like kinematic viscosity and thermal diffusivity.
Therefore, a difference in the behavior of the two
systems, if present, could be attributed also to the
uncertainties caused by a poor knowledge of EOS and
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dissipative coefficients, and the main question would
remain unanswered.

It has recently been pointed out [6] that there is a
very simple similarity, called “perfect similarity” in [6],
that can in principle be used for answering this intriguing
question. In our present paper, after a brief description of
the “perfect similarity” we consider energy requirements
for HED experiments where this scaling could be used,
and possible impact of such factors as heat loss,
irreproducibility of experimental data, and molecular mix.

II. PERFECT SIMILARITY

Consider a non-dissipative MHD, without making
any assumptions with regard to the equation of state, and
allowing for a possibility of spatial variation of the
chemical composition.

The similarity simply consists of transforming r and t
to

′ = ′ =r rA t At; ,     (1)

where A is a constant scaling factor, and leaving v, B, p,
and ρ unchanged. The set of equations for ideal MHD is:
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where v, ρ , p and B  are the velocity, the density, the
pressure, and the magnetic field, respectively (CGS units
are used). We have to supplement these equations with
the energy equation, which reads as:

∂ε
∂

ε ε
t

p+ ⋅ ∇ = − +( )∇⋅v v    (3)

where ε =ε (p,ρ, C) is the internal energy per unit volume.
This equation implies that there are no dissipative
processes in the fluid, so that the entropy of any fluid
element remains constant. The parameter C is used to
characterize a fluid with a varying composition. If one
deals with a more than a 2-component fluid, one can
introduce several such parameters. As, in the framework
of the ideal hydrodynamics, the mutual diffusion of
various materials is negligible, one has:

∂
∂
C

t
C+ ⋅ ∇ =v 0.          (4)

Let us now make a transition from the initial system,
described by Eqs. (2)-(4), to a “primed” system, in which
Eq. (1) holds , and

′ = ′ = ′ = ′ = ′ =v v B B, , , ,ρ ρ p p C C .   (5)

Substituting r’/A, t’/A, v’, B’, ρ’, p’,  and C’   for r, t, v,
B, ρ, p,  and C  in Eqs.  (2)-(4),   one finds that the primed

equations are identical to the un-primed ones. As an
example, we present the primed version of Eq. (3):
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which is indeed identical to Eq. (3). The same can be
easily checked for the other equations thereby proving
similarity. One can check (Cf. Ref. [5]) that the shock
boundary conditions are also invariant.

No approximations are involved, whence the
suggested term “perfect similarity.”  So, all the
differences in the behavior of two systems related to each
other by this similarity would be a direct measure of the
role of non-ideal effects.

Obviously, the drive in the primed system (say, an
ablation pressure pabl on the ablation surface) must be the
same in the two systems, being only subject to similarity
transform (1),

′ ′ ′ = ′ ′p t p A t Aabl abl( , ) ( / , / )r r   (7)

The energy required for driving a scaled experiment is
obviously

′ =W A W3 ,                (8)
An important merit of the perfect similarity is that it

does not change transport coefficients (e.g., shear
kinematic viscosity ν ) which remain equal at the
corresponding points of the initial and primed systems
(this is because the viscosity ν is a function of p, ρ, and C,
which are equal in the corresponding points of the two
systems).  Accordingly, the Reynolds number,
Re /= Lv ν , scales as

Re Re′ = A                 (9)
The same is true for the Peclet number, Pe L= v /χ , the
Peclet mass number, Pe L Dm = v / , and the magnetic
Reynolds number, Re /M ML D= v  (where χ, D , and DM

are thermal diffusivity, inter-spieces diffusion coefficient,
and magnetic diffusivity):

 = ;  = ;   =Pe APe Pe APe Am m m m′ ′ ′Re Re (10)
So, the perfect similarity holds for an arbitrary equation of
state; for an arbitrary varying composition; and in the
presence of shocks.

To be specific, we will refer to a small scale system
as an “unprimed” system, and to a large-scale system as
to a “primed” system; in other words, we assume that
A>1.

III. ASSESSING THE EFFECT OF SMALL-SCALE
VORTICES ON THE GLOBAL SCALE MOTION

As an illustration, we discuss the possibility of
applying the perfect similarity approach to an experiment
on the development of the Richtmyer-Meshkov (RM) and
Rayleygh-Taylor (RT) instability of the bump on the
interface of two different materials, as shown on Fig. 1.
To evaluate the feasibility of such an experiment, we use,
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as a reference point, two recent exemplary experiments by
H. Robey et al [7, 8] devoted to the studies of various
aspects of the RM-RT instabilities. These experiments
were carried out with the Omega laser, with the use of ten
beams and the total laser energy delivered to the target ~ 5
kJ.

A deeply nonlinear evolution of pre-imposed
perturbation on the interface between the plastic and CH
foam was studied. The characteristic diameter of the
package d was ~ 800 µm. It was enclosed in a tube (in
most cases, Beryllium) to delay the propagation of a
shock around the sides of the target. The characteristic
wavelength λ of perturbations  was ~ 50-70 µm. An
accuracy of measuring geometrical dimensions of the
Rayleigh-Taylor structures was in the range of 5% -10%.

As reduction of the drive energy is of much
importance for the perfect similarity approach (see Eq.
(8)), it is beneficial to study the evolution of a single
axisymmetric bump (dimple), as shown on Fig. 1, not a
multi-wave perturbation as in Refs. [7, 8]. Taking the
radius of the dimple r0 to be 70 µm, and leaving a 70 µm
gap between the edge of the dimple and the beryllium
tube, one finds that the inner diameter of the tube can be
made equal to d~280 µm. This reduction of the tube

diameter from ~ 800 mm, would allow one to reduce the
required drive energy by a factor of ~ 8, i.e., to
approximately 0.6 kJ.

Assuming that the energy available at the NIF for
driving the scaled-up target of Fig. 1 will be 0.9 MJ (out
of the total 1.8 MJ), one finds that the scaling factor A
will be in this case ~15. As the target will be much
thicker, a smaller amount of tracer will have to be added
or, alternatively, a more penetrating backlighter has to be
used.

The Reynolds number Re in experiments [7, 8] was
of order of 105 (see Fig. 7 of Ref. [8]). It will be
approximately the same in the experiment with the
axisymmetric   dimple    mentioned   above. In   the scaled
experiment with the NIF, the Reynolds number will be 15

times higher. For sometimes assumed logarithmic
dependence of the global scale motion on the Reynolds
number (e.g., [9]), changing the latter from 105 to 1.5⋅106

would mean a change of order of 15-20% in the global-
scale motion. This would already be distinguishable. A
power-law dependence of the global-scale dynamics on
the Reynolds number would be easier to find. In this case,
there will be no need in changing geometrical dimensions
by a factor of 10 (requiring a thousand-fold change in the

b
1

2 3

Be tube

a
Incident laser
beams

Experimental
package

Fig. 1.  Possible experiment on the study of the effect of the Reynolds number on the Rayleigh-Taylor instability: a)
General experimental setup, with the experimental package accelerated by the ablation pressure (shown in short arrows);
the lightly hatched material is denser then the heavily hatched; initial perturbation shown as a bump in the denser material,
will evolve into familiar “mushroom” on the nonlinear stage. The difference between two experiments would be the
geometric dimensions and the pulse duration; b) Rough sketch of strongly non-linear Rayleigh-Taylor “bubble”
originating from the initial bump in a small-scale experiment (1),  in a “perfectly similar” larger-scale experiment in the
case of weak Reynolds number effects (2), and in the case of substantial Reynolds number effects (3); the structure (2) is
geometrically similar to the structure (1), whereas the structure (3) is expected to be longer in the same instance of time as
structure (2). We do not show small-scale vortices excited in the interface zone which can be smeared by them.
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deposited energy) — a moderate change in the scale by a
factor of 1.5 – 2 would be sufficient to detect the power-
law dependence at the aforementioned level of accuracy.

Within the Kolmogorov-Obukhov model (e.g., [10]),
the scale of dissipative vortices ldiss is related to the global
scale L by:

ldiss~L(Recrit/Re)3/4, (11)
where Recrit is the critical Reynolds number for the onset
of the instability of the shear flow (e.g., [10]). This is a
parameter much greater than 1, between 100 and 1000
depending of the type of the motion. Assuming Recrit

~300, one finds ldiss~50LRe-3/4. Taking as a global scale
the dimple radius r0, one finds that the dissipative scale is
ldiss ~ 5⋅10-5 cm in the “small” system and ldiss ~10-4 cm in
the “large” system. These scales are certainly well below
the resolution of existing imaging techniques. On the
other hand, their effect (if present) on the global-scale
motion would be discernable even for a relatively weak
logarithmic dependence of the global flow on the
Reynolds number.

Other candidate experimental configurations include
pulsed jets [11], flows past the body [12], and turbulent
mix experiments [14].

IV. NON-STEADY-STATE EFFECTS

In the systems of the type shown on Fig. 1, the shear-
flow turbulence is driven by an “external” (in this case,
the RT) instability. Such systems are inherently non-
steady-state, and the turbulence has to respond to the
changing external conditions. Without getting into any
details of this complex problem, which is still an area of
active research (e.g., [14, 15] ), we just mention that, if
the dissipative-scale vortices have not been formed yet,
both systems should evolve according to equations of the
ideal hydrodynamics. In this case, there will be no
difference between the primed and unprimed systems,
aside from the difference in scales (see a caveat regarding
possible probabilistic effects later in this section). The
time required for the vortices at the dissipation scale to
develop depends on the Reynolds number. Therefore, if
the difference between the outcomes of the two
experiments is present, this may mean that one of them
has reached the state of developed turbulence, whereas
the other has not.

The development of small-scale vortices may depend
on whether the transition between two materials is
smooth, with a gradual variation of density, or sharp, with
a step-wise density variation (see Ref. [3] for more
detail). In the latter case, the small-scale perturbations are
driven at an early stage directly by the RT instability,
whereas at the former case they are not. In astrophysical

systems the transition between various layers is typically
relatively smooth. However, such targets are more
complex in manufacturing. The selection between these
two types of targets would require some further analysis.

It was tacitly assumed in our analysis that the large-
scale motion is perfectly reproducible in both the initial
and primed systems, up to possible inaccuracies in the
manufacturing the targets. On the other hand, it may
happen that the turbulence would have a “bursty”
behavior at the relatively large scales, still resolvable in
the images of the global flow. For the Reynolds numbers
in question, such features by themselves must be much
bigger than the dissipative scale (11). As the bursts may
have a statistical character, they would lead to shot-to-
shot irreproducibility of the images and make a direct
comparison between the primed and unprimed systems
impossible.

The presence of bursts can be checked in the
experiments with the unprimed (small-scale) system.
Taking several shots with the identical initial conditions
and comparing the images of the flow at the same instants
of time, one would be able to detect the bursty behavior.
If these bursts are present and appear in a statistical
fashion (which may or may not be the case), one would
have to resort to a statistical approach, by making a
several “identical” shots in both primed and unprimed
systems, averaging the images, and comparing the results
for the averaged images. This would, of course, be more
costly than in the case where the global flow is
deterministic.

V. OTHER DISSIPATIVE PROCESSES

Thus far, we have been concentrating on the viscous
processes. They indeed are critical in establishing
dynamical properties of the flow. However, the thermal
diffusivity is normally substantially higher than the
kinematic viscosity, so that the thermal diffusivity
becomes important at larger sizes of the vortices than the
viscosity. On the other hand, in order the thermal
conduction to play a role in the dynamical evolution of
the system, the compressibility effects must be important.
So, if one wants to isolate viscous effects, one has to look
into the settings where compressibility plays a
subdominant role. This is the case where the motion on
this smaller scales is strongly subsonic, which it usually
is.

There are special situations (delineated in Ref. 16)
where thermal conductivity leads to the onset of new,
dissipative, instabilities in the systems that are otherwise
RT stable. Clearly, on should avoid such situations if the
Re effect is the main target of the experiment.
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In the system with a varying composition, a mutual
diffusion of the species characterized by the mass Peclet
number Pem may become important. It would lead to a
molecular mix when the vortices reach the smallest
scales. If there is a concern that this effect may obscure
viscous effects, one may switch to packages made of one
single material, for example, the foam of a varying
density.

VI. DISCUSSION

As we have shown, the “perfect similarity” approach
allows evaluating effect of the Reynolds number on the
global scale motion in HED experiments. This can be
done despite substantial uncertainties with EOS and
transport coefficients, and our inability to resolve small-
scale vortices, provided the geometrical scales of large-
scale features are measured with a sufficient accuracy. A
concept of a dedicated experiment has been proposed and
it has been pointed out that meaningful results can be
obtained with ~ 1-10 kJ of energy on target. Outstanding
possibilities will open up when NIF beams reach ~100 kJ
of energy on target (1st cluster) and improve even further
for full NIF (~1 MJ on target); another good candidate
could be Z [17]. The experiment discussed would serve as
a direct discovery tool, not just a tool for code
benchmarking: we do not know at present (and will
hardly know in a few years to come) what dependence on
the Reynolds number comes out of such an experiment
(but this only adds fun and suspense to the whole
undertaking!)
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